复制成功

分享至

主页 > 比特币 >

观点:元宇宙的未来发展和创新依赖于新的科技创新范式——“机器猜想+科学智能”

2022.12.01

来源:经济观察报 (ID:eeo-com-cn)

作者:刘志毅,系数字经济学家,上海交大安泰AI与营销研究中心特聘高级研究员。

原文标题:《第五范式的出现:科学智能+机器猜想 | 数字之道》

观点:元宇宙的未来发展和创新依赖于新的科技创新范式——“机器猜想+科学智能”

图片来源:由无界版图AI工具生成

“范式”这一概念最初由美国著名科学哲学家托马斯·库恩1962年在《科学革命的结构》中提出来,指的是常规科学所赖以运作的理论基础和实践规范。

库恩指出,在科学发展的某一时期,总有一种主导范式,当这种主导范式不能解释的“异常”积累到一定程度时,就无法再使用旧有的范式去做解释,科学共同体将寻求既能解释旧范式的论据又能说明用旧范式无法解释的论据的更具备包容性的新范式,这时候就会发生科学革命。

在范式和科学共同体基础上,库恩又提出科学知识增长模式:前学科(没有范式)—常规科学(建立范式)—科学革命(范式动摇)—新常规科学(建立新范式)。

在前学科时期,科学家之间存在意见分歧,因而没有一个被共同接受的范式。不同范式之间竞争和选择的结果是一种范式得到大多数科学家的支持,形成科学共同体公认的范式,从而进入常规科学时期。

在常规科学时期,科学共同体的主要任务是在范式的指导下从事释疑活动,通过释疑活动推动科学的发展,“常规科学即解难题(Puzzle)”。在释疑活动过程中,一些新问题和新事物逐渐产生,并动摇了原有的范式,建立新范式的科学革命随之产生。

革命的结果是拥有新范式的新的科学共同体取代拥有旧范式的旧的科学共同体。新范式的产生并不表示新范式更趋近真理,只是解题能力的增强。

在后库恩时期,为了进一步阐明范式,库恩提出了专业母体,又可译为学科基质,是指一个科学共同体成员共同掌握的、有待进一步发展的基础,它主要包括概括(公式)、模型(一种形而上学的假设)和范例(最具体的题解),其中范例是最基本的要素,它使原先范式概念的模糊性得到改善。

我们看到,目前的主要的范式已经有四个基本范式,图灵奖得主、关系数据库的鼻祖吉姆.格雷(Jim Gray)在2017年加州善景城召开的NRC-CSTB大会上,发表了题为“科学方法革命”的演讲,提出将科学研究分为四个范式。

而2009年微软出版的《第四范式:数据密集型的科学发现》(《The Fourth Paradigm: Data-Intensive Scientific Discovery》)一书,则扩展了其思想。

简而言之,他们认为目前的科学研究的范式包括四个主要范式:

几千年到几百年期间,是经验范式,主要是通过实验用来描述自然现象(第一范式)。虽然在这些观察中,有许多规律是显而易见的,但没有系统性的方法来捕获或表达这些规律。

几百年到几十年前使用模型或归纳法进行科学研究,如开普勒定律、牛顿定律等,这是理论范式(第二范式)。第二范式以自然理论模型为特征,例如17世纪的牛顿运动定律,或19世纪的麦克斯韦电动力学方程。这些方程由经验观察,归纳推导得出,可以推广到比直接观察更为广泛的情形。

虽然这些方程可以在简单场景下解析求解,但直到20世纪有了电子计算机的发展,它们才得以在更广泛的情形下求解,从而产生了基于数值计算的第三范式。换言之,对于很多复杂问题,采用解析的模型难以求解,科学家们采用计算机进行仿真模拟,则形成了计算范式(第三范式)。

近几年,随着数据的增加和人们进入大数据时代,研究统一于理论、实验和模拟,即为第四范式。它的主要特征是:数据依靠信息设备收集或模拟产生,依靠软件处理,用计算机进行存储,使用专用的数据管理和统计软件进行分析。

机器学习是第四范式中日益重要的组成部分,它能够对大规模实验科学数据进行建模和分析。这四种范式是相辅相成,并存不悖。


科学智能+机器猜想


过去几年间,随着人工智能技术的发展,以深度学习为代表的AI技术应用于科学基础理论的发现中,兼顾了效率与准确性。

这种使用机器学习的新方式,与以往第四范式数据建模截然不同。因为用于训练神经网络的数据来自科学基本方程的数值解,而非经验观察,从而创造出一种新的知识创造的思路,即通过机器猜想的方式实现科学智能的应用。

诺贝尔奖经济学奖获得者赫伯特·西蒙提出的“信息处理范式”中提出了一种信息处理范式,这是一种由外向内的分析机制。

免责声明:数字资产交易涉及重大风险,本资料不应作为投资决策依据,亦不应被解释为从事投资交易的建议。请确保充分了解所涉及的风险并谨慎投资。OKEx学院仅提供信息参考,不构成任何投资建议,用户一切投资行为与本站无关。

加⼊OKEx全球社群

和全球数字资产投资者交流讨论

扫码加入OKEx社群

相关推荐

industry-frontier