
游戏厅捕鱼机漏洞打法(游
来源:经纬创投

图片来源:由无界版图AI工具生成
每隔一段时间,一项技术就会捕获全世界的想象力。从硅谷、华尔街、中关村、到世界各个角落的办公室和大学教室,人们都在热烈地讨论ChatGPT及人工智能的未来。
面对这个刚刚开始的颠覆性变革,我们有太多问题想问,有太多问题值得思考。但本文将聚焦在:
1引子:为什么这次不一样
最近几乎所有大型人工智能的前沿突破,都来自巨头公司,因为他们拥有强大的资金和算力。ChatGPT与上一波人工智能产品苹果Siri、微软小冰的核心不同是,过去都是小模型,而如今是真正的大模型。
以前,小模型的人工智能中,其实包含了若干Agent(类似于执行具体任务的程序),一个专门负责聊天对话、一个专门负责诗词生成、一个专门负责代码生成、一个专门负责营销文案等等,如果想添加新功能,可以去训练新Agent。一旦用户的问题超出了这个范围,人工智能就会变成人工智障。
而如今的ChatGPT之所以被称为真正的人工智能,就在于采用了成百上千亿参数的大模型,比如GPT-3模型就有1750亿个参数。而GPT本身是一个单项模型,是从左到右进行阅读,所以更擅长“写作文”。与谷歌BERT不同,BERT是一个双向模型,可以联系上下文进行分析,更擅长“完形填空”,但GPT与人类的思维方式更接近,所以我们能看到基于ChatGPT的创意写作应用,或是制作绘本。

InstructGPT的技术逻辑:RLHF的主要改变在于人工监督数据与调整后的奖励模型;图片来源:OpenAI
但大模型的高昂投入,让普通创业公司难以为继,因此参与者都是科技巨头。2022年OpenAI的收入为3000万美元,但净亏损总额预计为5.445亿美元。而GPT3训练一次的费用,大概是460万美元。当模型被训练好之后,仍然有使用成本,目前ChatGPT单轮对话的平均费用,大概在0.01-0.2美元之间。
并且先发优势会非常明显,因为这里有一个“数据和模型的飞轮效应”。在GPT-3之后,OpenAI所有的模型都没有开源,而是提供了API调用。在这个过程中,OpenAI可以借助ChatGPT建立真实用户调用和模型迭代之间的飞轮,OpenAI非常重视真实世界数据的调用,以及这些数据对模型的迭代。

文本模型的训练成本;图片来源:东吴证券
对于AI的发展来说,工程的重要性不亚于科学,创建一个迭代反馈的闭环至关重要。这也将是后来者,赶超ChatGPT的重要难点。
那么,这股AI新浪潮对于创业公司来说,意味着什么?
2对创业公司来说意味着什么?
OpenAI的创始人山姆·阿尔特曼(Sam Altman),曾对AI产业生态有过一个预测,他认为:
“将来应该会出现几个大型的基础模型,开发人员都将基于这些基础模型研发AI应用。但目前的情况依然是某一家公司开发出一个大型语言模型,然后开放API供他人使用。
我认为,将来在基础模型和具体AI应用研发之间会有一个中间层:出现一批专门负责调整大型模型以适应具体AI应用需求的初创企业。能做好这一点的初创公司将会非常成功,但这取决于它们能在「数据飞轮」上走多远。
创业公司会训练自己的模型,只不过不是从头开始。他们将采用基础模型,这些模型已经经过大量的计算和数据训练,然后在这些模型之上进行训练,为每个垂类创建模型。
他们所做的 1% 的训练,对于应用来说至关重要。我认为,这些创业公司将会非常成功,并且与众不同。可能包括一段时间内存在的 prompt engineering(提示工程)或基础核心模型(core base model)。
将来承担模型训练角色的应该不会是初创公司,但这些企业可以在上述的中间层角色中发挥巨大价值。我认为中间那一层会创造很多价值。”
总结来说,这个产业生态可能会是:
1、基础设施层:在最底层,是提供芯片、云计算等基础能力的厂商。
2、模型层:大公司负责训练基础大模型,这种基础能力可能会逐渐走向开放。一种可能是,最终形成类似ISO 和Android两大阵营,或是类似云计算的格局,一般这种量级的生态圈最终不会容纳太多家,但也不会被一家垄断。目前来看微软(OpenAI拔得头筹)vs谷歌(旗下有Deepmind)已经开战,但巨头的基础模型之间是否会形成差异?以及会形成怎样的差异性?这个问题也值得观察。但无论如何,这将会是继移动互联网之后,下一个史诗级的重大战略窗口,中国公司也需要积极加入战局。

国内外互联网大厂纷纷推出自研AI大模型;图片来源:安信证券
免责声明:数字资产交易涉及重大风险,本资料不应作为投资决策依据,亦不应被解释为从事投资交易的建议。请确保充分了解所涉及的风险并谨慎投资。OKEx学院仅提供信息参考,不构成任何投资建议,用户一切投资行为与本站无关。

和全球数字资产投资者交流讨论
扫码加入OKEx社群
industry-frontier